King Fahd University of Petroleum and Minerals

College of Computer Science and Engineering Information and Computer Science Department

ICS 254: Discrete Structures II Fall Semester 2016-2017 (161) Final Exam, Wednesday January 18th, 2017.

Name:

ID#:

Instructions:

- 1. This exam consists of nine pages, including this page, containing four questions.
- 2. You have to answer all **four** questions.
- 3. The exam is closed book and closed notes. NO CALCULATORS or any helping aides are allowed.
- 4. The questions are **not** equally weighed.
- 5. This exam is out of **100** points.
- 6. You have **120** minutes to finish the exam.
- 7. Make sure your answers are readable.
- 8. If there is no space on the front of the page, use the back of the page.

Question Number	Maximum Points	Points
1	20	
2	30	
3	20	
4	30	
Total	100	

- 1) (20 points): For each of the following questions, clearly mark the correct answer.
 - a) Let a, b and c be integers with $a \neq 0$. If a|b and a|c, then
 - i) a|gcd(b,c)
 - ii) a|(b-c)
 - iii) Both answers "i)" and "ii)" are correct
 - iv) $a \left| \frac{b}{c} \right|$
 - v) $\frac{b}{c}|a|$
 - b) Which of the following statements is true:
 - i) A number k divides the sum of three consecutive integers n, n + 1, and n + 2 if and only if it divides the middle integer n + 1.
 - ii) An integer n is divisible by 6 if and only if it is divisible by 3.
 - iii) For all integers a, b, and c, a|bc if and only if a|b and a|c.
 - iv) For all integers *a*, *b*, and *c*, a|(b + c) if and only if a|b and a|c.
 - v) If *m* and *n* are integers, then m|n if and only if $m^2|n^2$.
 - c) Let *L* be the least common multiple of 175 and 105. Among all the common divisors x > 1 of 175 and 105, let *D* be the smallest common divisor. Which of the following is correct:
 - i) D = 5 and L = 1050
 - ii) D = 7 and L = 1050
 - iii) D = 3 and L = 525
 - iv) D = 5 and L = 525
 - v) D = 3 and L = 35
 - d) To one percent accuracy, the number of integers n in the list 0^4 , 1^4 , 2^4 , ..., 1000^4 such that $n = 1 \pmod{16}$ is
 - i) 55%
 - ii) 50%
 - iii) 45%
 - iv) 25%
 - v) 6%
 - e) The value of 7^{224} (mod 11) is:
 - i) 3
 - ii) 4
 - iii) 5
 - iv) 6
 - v) 7

f) Given a relation R, if $R \neq R^{-1}$, where R^{-1} is the inverse relation, then R has to be:

- i) irreflexive
- ii) symmetric
- iii) not symmetric
- iv) asymmetric
- v) antisymmetric

g) The relation that is represented by the graph below is

- i) Reflexive, not symmetric and transitive.
- ii) Reflexive, antisymmetric and not transitive.
- iii) Reflexive, asymmetric and transitive.
- iv) Irreflexive, not symmetric and not transitive.
- v) Irreflexive, antisymmetric and not transitive.

Questions "h)" to "j)" are on the following partially ordered set (poset): ({{1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, {3, 4}, {1, 3, 4}, {2, 3, 4}}, \subseteq).

- h) The set of minimal elements equals
 - i) {Φ}
 - ii) {{1}}
 - iii) {{1}, {2}}
 - iv) {{1}, {2}, {4}}
 - v) $\{\{1\},\{2\},\{3\},\{4\}\}$
- i) The least upper bound of $\{\{2\}, \{4\}\}$:
 - i) is $\{\{2, 4\}\}$
 - ii) is $\{\{2, 3, 4\}\}$
 - iii) is $\{\{2\}\}$
 - iv) is $\{\{4\}\}$
 - v) does not exist.
- j) The set of lower bounds of $\{\{1,3,4\},\{2,3,4\}\}$ is
 - i) $\{\{3,4\}\}$
 - ii) $\{\{1,4\},\{2,4\},\{3,4\}\}$
 - iii) $\{\{4\}, \{3, 4\}\}$
 - iv) {{3}, {4}, {3, 4}}
 - v) $\{\{1\},\{2\},\{4\},\{3,4\}\}$

2) (**30** points) Graphs:

a) (5 points) List <u>all</u> values of m such that the wheel graph W_m is isomorphic to a complete graph K_n . Justify your answer.

b) (5 points) Determine whether these two graphs are isomorphic or not. Justify your answer.

c) (20 points) A grid graph G(m, n) is defined as having *m* rows and *n* columns in the form of a grid. For example, G(4, 5) is shown below:

i) Find an expression for the number of vertices, the number of edges and the number of regions in G(m, n).

- ii) For which values of m and n is G(m, n) a bipartite graph?
- iii) For which values of m and n does G(m, n) have a Hamilton path?
- iv) For which values of m and n does G(m, n) have a Hamilton circuit?

- v) For which values of m and n does G(m, n) have an Euler path?
- vi) For which values of m and n does G(m, n) have an Euler circuit?

a) (6 points) In a full *m*-ary tree *T* with height *h*, where all leaf nodes appear at the same level:
i) Find the number of leaf nodes in *T*.

ii) Find the number of internal nodes in T.

b) (6 points) Consider the following mathematical expression: $((x + 2) \uparrow 3) * (y - (3 + x)) - 5$. Represent this expression using a binary tree.

- c) (8 points) For the following two questions, you have to <u>show the order of evaluation</u> for each expression. Evaluating these expressions by first converting them into infix notation will receive 0 points.
 - i) Evaluate the prefix expression: $+ \uparrow 3 2 \uparrow 2 3 / 6 4 2$

ii) Evaluate the postfix expression: 5 2 1 - - 3 1 4 + + *

4) (**30** points) Modeling Computation:

a) (6 points) Let $\Sigma = \{a, b\}$. Prove that $\{a, b\}^* = a^* . (b. a^*)^*$.

b) (14 points) Let Σ = {a, b}. Find regular expressions for the following languages over Σ.
i) L_s = {a^mbⁿ|m ≥ 4 ∧ n ≤ 3, m, n ∈ N}.

ii) $L_t = \overline{L_s}$, the language complement to the one specified in "i)". **Hint**: The regular expression is the union of three expressions! c) (6 points) Consider the following finite automaton, where q_0 is the initial state.

i) (2 points) Is it deterministic or nondeterministic? Explain.

ii) (4 points) Showing the propagation of states, determine whether the above automaton accepts the string <u>*abba*</u> or not.

d) (4 points) Draw a non-deterministic finite automaton for the regular expression (ab + ba) * . b